In any triangle, prove that: $a\cos A+b\cos B+c\cos C= 4R\sin A.\sin B.\sin C$
My Attempt: $$L.H.S=a\cos A+ b\sin A+ c\sin C$$ $$=2R.\sin A. \cos A+ 2R\sin B\cos B+2R\sin C\cos C$$ $$=R.\sin (2A)+R.\sin (2B)+R.\sin (2C)$$ $$=R(\sin (2A)+\sin (2B)+\sin (2C)$$