I'm trying to get a closed form solution for the following product:
$$ \prod_{i=1}^t\left(1-\frac{a}{i^\beta}\right) $$
where $\beta\in[1,2]$ and $a>0$. In my application, an upper bound that converges to zero as $t\to\infty$ would also work.
Edit:
Extending the method linked by @DietrichBurde in the comments, we get
\begin{align} \prod_{i=1}^t\left(1-\frac{a}{i^\beta}\right) &= \prod_{i=1}^t\frac{i^\beta-a}{i^\beta} = \frac{\prod_{i=1}^t i^\beta-a}{\prod_{i=1}^ti^\beta} = \frac{\prod_{i=1}^t i^\beta-a}{\left(\prod_{i=1}^ti\right)^\beta} = \frac{\prod_{i=1}^t i^\beta-a}{\Gamma\left(t+1\right)^\beta} \end{align} All that remains is to evaluate the numerator. For $\beta=1$, we have $$ \prod_{i=1}^t (i-a) = \frac{\Gamma(t-a+1)}{\Gamma(a+1)} $$ and so $$ \prod_{i=1}^t\left(1-\frac{a}{i}\right) = \frac{\Gamma(t-a+1)}{\Gamma(a+1)\Gamma(t+1)} $$ as in the linked answer.
For $\beta=2$, we can factorize to get \begin{align} \prod_{i=1}^t (i^2-a) &= \prod_{i=1}^t (i-\sqrt{a})(i+\sqrt{a}) \\&= \left(\prod_{i=1}^t (i-\sqrt{a})\right)\left(\prod_{i=1}^t (i+\sqrt{a})\right) \\&= \frac{\Gamma(t-\sqrt{a}+1)\Gamma(t+\sqrt{a}+1)}{\Gamma(-\sqrt{a}+1)\Gamma(\sqrt{a}+1)} \\&= \frac{\Gamma(t-\sqrt{a}+1)\Gamma(t+\sqrt{a}+1)}{\Gamma(-\sqrt{a}+1)\Gamma(\sqrt{a})(a+1)} \\&= \frac{\sin(\pi \sqrt a)}{\pi(a+1)}\Gamma(t-\sqrt{a}+1)\Gamma(t+\sqrt{a}+1) \end{align} where the last line follows from Eurler's reflection formula. Therefore, $$ \prod_{i=1}^t\left(1-\frac{a}{i^2}\right) = \frac{\sin(\pi \sqrt a)\Gamma(t-\sqrt{a}+1)\Gamma(t+\sqrt{a}+1)}{\pi(a+1)\Gamma(t+1)^2}. $$ But now I'm not sure what to do with fractional $\beta$. In particular, how can we rewrite $\prod_{i=1}^t (i^\beta -a)$ in a more useful form?