I know from this question that Derivation of Gradshteyn and Ryzhik integral 3.876.1 (in question)
$\int_{0}^{\infty} \frac{\sin \left( x\sqrt{t^{2}+a^{2}}\right)}{\sqrt{t^{2}+a^{2}}} \, dt = \frac{\pi}{2} J_{0}(ax), \quad (a>0, \ x>0)$
What are the integrals to:
$\int_{0}^{\infty} \frac{\sin \left( xt\sqrt{t^{2}+a^{2}}\right)}{t} \, dt = ?, \quad (a>0, \ x>0)$
$\int_{n}^{m} \frac{\sin \left( xt\sqrt{t^{2}+a^{2}}\right)}{t} \, dt = ?, \quad (a>0, \ x>0, \ m > n > 0)$