The limit of a sequence declares that: $\lim_{x\to \infty}a_n=L$ if and only if for some$\,n>N_o, |a_n-L|<ε$ where $ε>0, N_0>0$
I want to use that to prove: $\lim_{n\to \infty} \int_{-\infty}^{+\infty}\,f(t)\cdotδ_n(t)\,dt=f(0)$, $f(t)$ is continuous at $t=0$.
$${\rm Definition:} \qquadδ_n(t)=\Big\{^{n,\,0<t<\frac1n}_{0,\,elsewhere}$$ $$\Big|f(t)-f(0)\Big|<ε \Leftarrow \Rightarrow$$ $$\Big|\int_{0}^{\frac1n}\,nf(t)dt\,-\,f(0)\Big|<ε \Leftarrow \Rightarrow$$ $$\Big|\int_{0}^{\frac1n}\,n\Big(f(t)\,-\,f(0)\Big)\,dt\Big|<ε \Leftarrow \Rightarrow$$
Now i am stuck. I do not see what are the logic steps to solve it.