Here is an algorithm for solving this type of problem. It is not in Marcus, but then I think Marcus makes some assumptions as to background, I dont know what he has in mind as a solution, but at least this method is simple and general. It is related to continued fractions and ultimately quadratic forms.
${\bf Theorem.}$The solutions of $x^2-dy^2=N$ where $|N|<\sqrt{d}$ are given by
$$p_n^2-dq_n^2=(-1)^{n-1}a_{n+1}$$ where $\frac{p_n}{q_n}$ are the continued fraction approximations.
To find the continued fraction expansion Build a sequence of triples $(a_n,b_n,c_n)$ such that $b_n^2-4a_nc_n=D$.
In the case of $d=223$, we have $D=4\cdot 223=892$. The $a_n$ will give the possible values for $N$.
Further
1)$a_{n+1}=-c_n$
2)$2c_n|b_n+b_{n+1}$
3) $\sqrt{D}-2|c_n|<b_{n+1}<\sqrt{D}$
So in the case of $d=223$ here is the calculation.
$\sqrt{892}=29.8\cdots$
Start with
$$(a_0,b_0,c_0)=(223,0,-1).$$
To get the next triple, set,
$$(223,0,-1)(1,b_1,c_1)$$
we must have $2|0+b_1$ and $27.8<b_1<29.8$ so $b_1=28$ and since $D=b_1^2-4a_1c_1$, $c_1=27$.
To get the next one,
$$(-1,28,27)(-27,b_2,c_2)$$
and $2\cdot 27| 28+b_2$ with $0\leq b_2<29.8$ , thus $b_2=26$.
The complete sequence is
$$(223,0,-1)$$
$$(-1,28,27)$$
$$(-27,26,2)$$
$$(-2,26,27)$$
$$(-27,28,1)$$
$$(-1,28,27)$$
thus the last is the same as the second, so we have repeat. Thus we see that the only numbers $\leq 14$ that are represented are $223, 1, 27, 2$ so
only $1,2$ amongst the candidate numbers are represented and split into principal ideals. Thus $3,11,13$ split into non principal ideals.
If further you calculate the differences $\delta_n=\frac{b_n+b_{n+1}}{2|c_n|}$ you get the continued fraction expansion, here we have
$$\delta_0=14$$
$$\delta_1=1$$
$$\delta_2=13$$
$$\delta_3=1$$
$$\delta_4=28$$ giving
$$\sqrt{223}=[14,\overline{1,13,1,28}]$$
${\bf Additional \ Explanation:}$ If $\sqrt{d}=[k_0, k_1, k_2, \cdots ]$ is a continued fraction expansion, and let
$$\tau_n=[k_n, k_{n+1}, k_{n+2}, \cdots ]$$
Then $$\tau_n=\frac{b_n+\sqrt{D}}{2c_n}$$ where $c_n,b_n$ are the numbers above.