If $u=\sin^{-1}\frac{2x}{1+x^2}$ and $v=\tan^{-1}\frac{2x}{1-x^2}$, then find $\frac{du}{dv}$
My Attempt
$$
\frac{dv}{dx}=\frac{2}{1+x^2}
$$
$$
\frac{du}{dx}=\frac{1}{\sqrt{1-\frac{4x^2}{(1+x^2)^2}}}.\frac{(1+x^2).2-2x.2x}{(1+x^2)^2}=\frac{|1+x^2|}{\sqrt{1+x^4+2x^2-4x^2}}.\frac{2+2x^2-4x^2}{(1+x^2)^2}\\
=\frac{|1+x^2|}{|1-x^2|}.\frac{2(1-x^2)}{(1+x^2)^2}=\frac{2(1-x^2)}{|1-x^2|.(1+x^2)}=\begin{cases}\frac{2}{1+x^2},\;x^2\leq1\\\frac{-2}{1+x^2},\;x^2>1\\\end{cases}
$$
Mathematica is giving after Simplify
and PoweExpand
, $\frac{du}{dx}=\frac{-2}{1+x^2}$
But I think $\frac{du}{dx}=\frac{2}{1+x^2}$ as $\sin^{-1}$ is an increasing function and thus $\frac{du}{dv}=1$. How do I find the required derivative ?