Let the sequence $\left( x_n \right)_{n \in \mathbb{N}}$ of real numbers be defined inductively as follows: $$ x_1 \colon= 1, \ x_2 \colon= 2, \ \mbox{ and } \ x_n \colon= \frac{1}{2} \left( x_{n-1} + x_{n-2} \right) \ \mbox{ for any natural number } n > 2. $$
Then how to find an explicit, non-inductive formula for $x_n$?
And, how to show the following? $$ x_{2n+1} = 1 + \frac{1}{2} + \frac{1}{2^3} + \cdots + \frac{1}{2^{2n-1}} $$ for all $n \in \mathbb{N}$.
My Attempt:
We note that $x_1 = 1$, $x_2 = 2$, and so $$ x_3 = \frac{1}{2} \left( x_2 + x_1 \right) = \frac{3}{2} = 1 + \frac{1}{2} = 1 + \frac{1}{2^1}, $$ $$ x_4 = \frac{1}{2} \left( x_3 + x_2 \right) = \frac{7}{4} = 1 + \frac{1}{2} + \frac{1}{4} = 1 + \frac{1}{2^1} + \frac{1}{2^2}, $$ $$ x_5 = \frac{1}{2} \left( x_4 + x_3 \right) = \frac{13}{8} = 1 + \frac{1}{2} + \frac{1}{8} = 1 + \frac{1}{2} + \frac{1}{2^3}, $$ $$ x_6 = \frac{1}{2} \left( x_5 + x_4 \right) = \frac{27}{16} = 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{16} = 1 + \frac{1}{2^1} + \frac{1}{2^3} + \frac{1}{2^4}, $$ $$ x_7 = \frac{1}{2} \left( x_6 + x_5 \right) = \frac{53}{32} = 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{32} = 1 + \frac{1}{2^1} + \frac{1}{2^3} + \frac{1}{2^5}, $$ $$ x_8 = \frac{1}{2} \left( x_7 + x_6 \right) = \frac{107}{64} = 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{64} = 1 + \frac{1}{2^1} + \frac{1}{2^3} + \frac{1}{2^5} + \frac{1}{2^6}, $$ $$ x_9 = \frac{1}{2} \left( x_8 + x_7 \right) = \frac{213}{128} = 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{128} = 1 + \frac{1}{2^1} + \frac{1}{2^3} + \frac{1}{2^5} + \frac{1}{2^7}, $$ $$ x_{10} = \frac{1}{2} \left( x_9 + x_8 \right) = \frac{427}{256} = 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{128} + \frac{1}{256} = 1 + \frac{1}{2^1} + \frac{1}{2^3} + \frac{1}{2^5} + \frac{1}{2^7} + \frac{1}{2^8}. $$ So, for each $n \in \mathbb{N}$, we have $$ x_{2n} = 1 + \frac{1}{2^1} + \frac{1}{2^3} + \frac{1}{2^5} + \cdots + \frac{1}{2^{2n-3}} + \frac{1}{2^{2n-2}} = 1 + \frac{1}{2} \left( 1 + \frac{1}{4} + \frac{1}{4^2} + \cdots + \frac{1}{4^{n-2}} \right) + \frac{1}{4^{n-1}} = 1 + \frac{1}{2} \frac{ 1 - \left( \frac{1}{4} \right)^{n-1} }{ 1 - \frac{1}{4} } + \frac{1}{4^{n-1}} = 1 + \frac{2}{3} \left( 1 - \left( \frac{1}{4} \right)^{n-1} \right) + \frac{1}{4^{n-1}} = \frac{1}{3} \left( 5 + \frac{1}{4^{n-1} } \right) = \frac{1}{3} \left( 5 + \frac{ 4 }{ 4^n } \right), $$ and $$ x_{2n+1} = 1 + \frac{1}{2^1} + \frac{1}{2^3} + \frac{1}{2^5} + \ldots + \frac{1}{2^{2n-1}} = 1 + \frac{1}{2} \left( 1 + \frac{1}{4} + \frac{1}{4^2} + \cdots + \frac{1}{4^{n-1} } \right) = 1 + \frac{ \frac{1}{2} \left( 1 - \left( \frac{1}{4} \right)^n \right) }{ 1 - \frac{1}{4} } = 1 + \frac{2}{3} \left( 1 - \left( \frac{1}{4} \right)^n \right) = \frac{1}{3} \left( 5 - \frac{2}{4^n} \right). $$
Thus we have obtained $$ x_{2n} = \frac{1}{3} \left( 5 + \frac{ 4 }{ 4^n } \right), \tag{1} $$ and $$ x_{2n+1} = \frac{1}{3} \left( 5 - \frac{2}{4^n} \right) \tag{2} $$ for each $n \in \mathbb{N}$.
Now suppose that, for some $n \in \mathbb{N}$, the formulas (1) and (2) hold. Then we find that $$ x_{2n+2} = \frac{1}{2} \left( x_{2n+1} + x_{2n} \right) = \frac{1}{2} \left( \frac{1}{3} \left( 5 - \frac{2}{4^n} \right) + \frac{1}{3} \left( 5 + \frac{ 4 }{ 4^n } \right) \right) = \frac{1}{3} \left( 5 + \frac{1}{4^n} \right) = \frac{1}{3} \left( 5 + \frac{4}{4^{n+1}} \right), \tag{3} $$ and then $$ x_{2n+3} = \frac{1}{2} \left( x_{2n+2} + x_{2n+1} \right) = \frac{1}{2} \left( \frac{1}{3} \left( 5 + \frac{4}{4^{n+1}} \right) + \frac{1}{3} \left( 5 - \frac{2}{4^n} \right) \right) = \frac{1}{3} \left(5 - \frac{2}{4^{n+1} } \right). \tag{4} $$
Thus we find that formulas (3) and (4) are just the formulas (1) and (2), respectively, with $n$ replaced by $n+1$. This establishes that formulas (1) and (2) hold for all $n \in \mathbb{N}$.
Is there anything wrong with this reasoning?