Calculate this:
$$\int_{0}^{\pi }\frac{\sin2017x}{\sin x}\mathrm dx$$ I have calculated this in the answers, but I'm not sure whether it's right or wrong. I'll be glad if you check it. Thank you guys!
Calculate this:
$$\int_{0}^{\pi }\frac{\sin2017x}{\sin x}\mathrm dx$$ I have calculated this in the answers, but I'm not sure whether it's right or wrong. I'll be glad if you check it. Thank you guys!
So at first I used $\sin{x} = \frac{e^{ix}-e^{-ix}}{2i}$,
then $\int^{\pi}_{0} \frac{\sin{2017x}}{\sin{x}}dx=\int^{\pi}_{0} \frac{e^{2017ix}-e^{-2017ix}}{e^{ix}-e^{-ix}}dx=\int^{\pi}_{0} \sum_{k=0}^{2016}e^{(2016-2k)ix}dx=$
$=\int_{0}^{\pi}dx+\int^{\pi}_{0} \sum_{k=0, k≠1008}^{2016}e^{(2016-2k)ix}dx=$
$=\pi+\sum_{k=0,k≠1008}^{2016}\frac{e^{(1008-k)i2\pi}}{(2016-2k)i}-\sum_{k=0,k≠1008}^{2016}\frac{e^{(1008-k)i2*0}}{(2016-2k)i}=$
$=\pi + \sum_{k=0,k≠1008}^{2016}\frac{1}{(2016-2k)i}-\sum_{k=0,k≠1008}^{2016}\frac{1}{(2016-2k)i}=\pi$