$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\ds{%
\int_{0}^{\pi}{x\sin\pars{x} \over 5 - 3\cos\pars{x}}\,\dd x}} =
\left.\Re\int_{x\ =\ 0}^{x\ =\ \pi}{\bracks{-\ic\ln\pars{z}}\bracks{\pars{1 - z^{2}}\ic/\pars{2z}} \over 5 - 3\bracks{\pars{1 + z^{2}}/\pars{2z}}}\,
{\dd z \over \ic z}\,\right\vert_{\ z\ =\ \exp\pars{\ic x}}
\\[5mm] = &\
\left.-\,{1 \over 3}\,\Im\int_{x\ =\ 0}^{x\ =\ \pi}\ln\pars{z}\,
{\pars{1 - z^{2}} \over \pars{z - 1/3}\pars{z - 3}}\,
{\dd z \over z}\,\right\vert_{\ z\ =\ \exp\pars{\ic x}}
\qquad\pars{\begin{array}{l}
\mbox{with}
\\
\ds{-\,{\pi \over 2} < \arg\pars{z} < {3\pi \over 2}}
\end{array}}
\\[1cm] \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\sim}\,\,\, &\
{1 \over 3}\,\Im\int_{-1}^{-\epsilon}\bracks{\ln\pars{-x} + \ic\pi}\,
{\pars{1 - x^{2}} \over \pars{x - 1/3}\pars{x - 3}}\,{\dd x \over x}
\\[2mm] + &\
{1 \over 3}\,\Im\int_{\pi}^{0}\bracks{\ln\pars{\epsilon} + \ic\theta}\
\,{\epsilon\expo{\ic\theta}\ic\,\dd\theta \over \epsilon\expo{\ic\theta}} +
{1 \over 3}\,\Im\int_{\epsilon}^{1/3-\epsilon}
\ln\pars{x}\,{\pars{1 - x^{2}} \over \pars{x - 1/3}\pars{x - 3}}\,
{\dd x \over x}
\\[2mm] + &\
{1 \over 3}\,\Im\int_{\pi}^{0}\ln\pars{1 \over 3}\
{8/9 \over \pars{\epsilon\expo{\ic\theta}}\pars{-8/3}}\,{\epsilon\expo{\ic\theta}\ic\,\dd\theta \over 1/3} +
{1 \over 3}\,\Im\int_{1/3 + \epsilon}^{1}
\ln\pars{x}\,{\pars{1 - x^{2}} \over \pars{x - 1/3}\pars{x - 3}}\,
{\dd x \over x}
\\[1cm] = &\
-\,{1 \over 3}\,\pi\int_{\epsilon}^{1}{1 - x^{2} \over \pars{x + 1/3}
\pars{x + 3}}\,{\dd x \over x} -
{1 \over 3}\,\pi\ln\pars{\epsilon} - {1 \over 3}\,\pi\ln\pars{3}
\\[5mm] = &\
-\,{1 \over 3}\,\pi\int_{\epsilon}^{1}\bracks{{1 - x^{2} \over \pars{x + 1/3}
\pars{x + 3}} - 1}\,{\dd x \over x}\ \underbrace{-
{1 \over 3}\,\pi\int_{\epsilon}^{1}{\dd x \over x} -
{1 \over 3}\,\pi\ln\pars{\epsilon}}_{\ds{=\ 0}}\ - {1 \over 3}\,\pi\ln\pars{3}
\\[5mm] \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\to}\,\,\, &\
\pi\
\underbrace{\int_{0}^{1}\pars{{1 \over 1 + 3x} + {1 \over 9 + 3x}}\dd x}
_{\ds{{1 \over 3}\,\ln\pars{16 \over 3}}} -
{1 \over 3}\,\pi\ln\pars{3} = \bbx{{2 \over 3}\,\pi\ln\pars{4 \over 3}}
\end{align}