I would like to ask if my below proof is fine or if it has any error! Furthermore, I feel that my approach is a bit long, so please suggest any faster or nice approach. Thank you for your help!
Theorem:
Let $(F_n)_{n \in \mathbb{N}}$ be a Fibonacci sequence such that $F_0=0,F_1=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \in \mathbb{N}$. Then $(4 \mid n \Leftrightarrow 3 \mid F_n)$ for all $n \in \mathbb{N}$.
Proof:
Let $P(n)$ is the statement $(4 \mid n \Leftrightarrow 3 \mid F_n)$.
$F_0=0 \implies (4 \mid 0 \wedge 3 \mid F_0) \implies P(0)$ is true.
Assuming $P(k)$ is true for $k \leq n$. There are 4 possible cases in total.
- $n+1 = 4x+4$
$4 \mid 4x \implies 3 \mid F_{4x} \implies F_{4x}=3r$.
$4 \not \mid 4x+1 \implies 3 \not \mid F_{4x+1} \implies F_{4x+1}=3s+p$ where $p \in \{1,2\}$.
We have:
$F_{4x+2}=F_{4x+1}+F_{4x}=3r+3s+p$
$F_{4x+3}=F_{4x+2}+F_{4x+1}=3r+6s+2p$
$F_{4x+4}=F_{4x+3}+F_{4x+2}=6r+9s+3p$
$\implies F_{n+1}=F_{4x+4}=6r+9s+3p \implies 3 \mid F_{n+1}$
As a result, $(4 \mid n+1 \wedge 3 \mid F_{n+1})$. This implies $P(n+1)$ is true.
- $n+1 = 4x+3$
$4 \mid 4x \implies 3 \mid F_{4x} \implies F_{4x}=3r$.
$4 \not \mid 4x+1 \implies 3 \not \mid F_{4x+1} \implies F_{4x+1}=3s+p$ where $p \in \{1,2\}$.
We have:
$F_{4x+2}=F_{4x+1}+F_{4x}=3r+3s+p$
$F_{4x+3}=F_{4x+2}+F_{4x+1}=3r+6s+2p$
$\implies F_{n+1}=F_{4x+3}=3r+6s+2p \implies 3 \not \mid F_{n+1}$
As a result, $(4 \not \mid n+1 \wedge 3 \not \mid F_{n+1})$. This implies $P(n+1)$ is true.
- $n+1 = 4x+2$
$4 \mid 4x \implies 3 \mid F_{4x} \implies F_{4x}=3r$.
$4 \not \mid 4x+1 \implies 3 \not \mid F_{4x+1} \implies F_{4x+1}=3s+p$ where $p \in \{1,2\}$.
We have:
$F_{4x+2}=F_{4x+1}+F_{4x}=3r+3s+p$
$\implies F_{n+1}=F_{4x+2}=3r+3s+p \implies 3 \not \mid F_{n+1}$
As a result, $(4 \not \mid n+1 \wedge 3 \not \mid F_{n+1})$. This implies $P(n+1)$ is true.
- $n+1 = 4x+1$
$4 \not \mid 4x-1 \implies 3 \not \mid F_{4x-1} \implies F_{4x-1}=3s+p$ where $p \in \{1,2\}$.
$4 \mid 4x \implies 3 \mid F_{4x} \implies F_{4x}=3r$.
We have:
$F_{4x+1}=F_{4x}+F_{4x-1}=3r+3s+p$
$\implies F_{n+1}=F_{4x+1}=3r+3s+p \implies 3 \not \mid F_{n+1}$
As a result, $(4 \not \mid n+1 \wedge 3 \not \mid F_{n+1})$. This implies $P(n+1)$ is true.
To sum up 1, 2, and 3: $P(n+1)$ is true.
By principle of strong induction, $P(n+1)$ is true for all $n \in \mathbb{N}$.