Let $a,b,c $ be a fix elements of a field $F$ Show that $$W= \big((x,y,z)| \ \ ax+by+cz=0 ; x,y,z\in F\big) $$ is a subspace of $V_3(F)$
The necessary and sufficient condition for non empty subset $W$ of a vector space $V(F)$ to be a subspace of V is that $\alpha u+\beta v\in W $ for all $\alpha ,\beta\in F$ and $u,v\in W$
Now in this question I used above thought and proceeded in following manner.
Let $u=(x_1,y_1,z_1)$
$v=(x_2,y_2,z_2)$
$\alpha u+\beta v = \alpha(x_1,y_1,z_1)+ \beta(x_2,y_2,z_2)$
$\implies(\alpha x_1 +\beta x_2,\alpha y_1+\beta y_2,\alpha z_1+\beta z_2)$
Now can I say $(\alpha x_1 +\beta x_2,\alpha y_1+\beta y_2,\alpha z_1+\beta z_2)\in W \implies \alpha u+\beta v \in W $ ??
Did I do it correct?