If we select random a element of the set $A=\{0000,0001,0002,...,9999\}$ which is the probability the sum of the first two digit is equal to the sum of the two last digit?
My work:
Let $S$="The set of posibility solutions of A", note $|S|=10000$ (sample space)
Let the event $E=$"The set of number such that the sum of the first two digit is equal to the sum of the two last digit"
We need calculate $|E|$.
We know the sum of the numbers is at most 18.
For 1: $(1+0), (0+1)$ total of number: 2
For 2: $(2+0), (0+2), (1+1)$ total of number: 3
For 3: $(3+0), (0+3), (2+1), (1+2)$ total of number: 4
For 4: $(4+0), (0+4), (3+1), (1+3), (2+2)$ total of number: 5
For 5: $(5+0), (0+5), (4+1), (1+4), (3+2), (2+3)$ total of number: 6
For 6: $(6+0), (0+6), (5+1), (1+5), (4+2), (2+4), (3+3)$ total of number: 7
For 7: $(7+0),(0+7),(6+1), (1+6), (4+3), (3+4), (5+2),(2+5)$ total of number: 8
For 8: $(8+0),(0+8),(7+1), (1+7), (6+2), (2+6), (5+3),(3+5),(4,4)$ total of number: 9
For 9: $(9+0),(0+9),(8+1), (1+8), (7+2), (2+7), (6+3),(3+6),(5,4),(4,5)$ total of number: 10
For 10: $(9+1), (1+9), (8+2), (2+8), (7+3),(3+7),(6,4),(4,6),(5,5)$ total of number: 9
For 11: $(9+2), (2+9), (8+3), (3+8), (7+4),(4+7),(6,5),(5,6),$ total of number: 8
For 12: $(9+3), (3+9), (8+4), (4+8), (7+5),(5+7),(6,6),$ total of number: 7
For 13: $(9+4), (4+9), (8+5), (5+8), (7+6),(6+7)$ total of number: 6
For 14: $(9+5), (5+9), (8+6), (6+8), (7+7)$ total of number: 5
For 15: $(9+6), (6+9), (8+7), (7+8)$ total of number: 4
For 16: $(9+7), (7+9), (8+8)$ total of number: 3
For 17: $(9+8), (8+9)$ total of number: 2
For 18: $(9+9)$ total of number: 1
Then $|E|=99$
In consequence the probability is 0.0099
How can make this by other way?