This answer is based on the assumption that the definition of "positive type" for a function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ is as follows:
$$ \sum_{i,j=1}^{n} f(t_i, t_j) a_i \bar{a}_j \geq 0 $$
for all $t_i$'s in $\mathbb{R}$ and $a_i$'s in $\mathbb{C}$.
Notice that, for $\alpha \geq 0$ and $\mathrm{i}=\sqrt{-1}$, we have
$$ \forall t \in \mathbb{R} \ : \quad e^{-\alpha|t|} = \frac{1}{\pi} \int_{\mathbb{R}} \frac{e^{\mathrm{i}\alpha t x}}{1+x^2} \, dx $$
(See this answer, for instance.) Then
\begin{align*}
\sum_{i,j = 1}^{n} e^{-\alpha |t_i - t_j|} a_i \bar{a}_j
&= \frac{1}{\pi} \int_{\mathbb{R}} \frac{1}{1+x^2} \left( \sum_{i,j = 1}^{n} e^{\mathrm{i}\alpha (t_i - t_j) x} a_i \bar{a}_j \right) \, dx \\
&= \frac{1}{\pi} \int_{\mathbb{R}} \frac{1}{1+x^2} \left| \sum_{j=1}^{n} e^{\mathrm{i}\alpha t_j x} a_j \right|^2 \, dx \\
&\geq 0.
\end{align*}
Alternatively, this follows by noting that the function $f(s, t) = e^{-\alpha|s-t|}$ can be realized as the covariance kernel of an Ornstein-Uhlenbeck process.