(a) Exercise 1 of that section is: Let $f,g: Q\to \mathbb{R}$ be bounded function such that $f(x)\leq g(x)$ for $x\in Q$. Show that $\underline{\int_{Q}}f\leq \underline{\int_{Q}}g$ and $\overline{\int_{Q}}f\leq \overline{\int_{Q}}f$,
I think of using the exercise to conclude that $\underline{\int_{x\in A}}\underline{\int_{y\in B}}f(x,y)\leq \underline{\int_{x\in A}}g(x)$ and $\overline{\int_{x\in A}}g(x)\leq \overline{\int_{x\in A}}\overline{\int_{y\in B}}f(x,y)$ for all $x\in A$, But fubini's theorem tells me that $\int_{Q}f=\int_{x\in A}\underline{\int_{y\in B}}f(x,y)=\int_{x\in A}\overline{\int_{y\in B}}f(x,y)=\underline{\int_{x\in A}}\underline{\int_{y\in B}}f(x,y)\overline{\int_{x\in A}}\overline{\int_{y\in B}}f(x,y)$, with which $\overline{\int_{x\in A}}g(x)=\int_{Q}f=\underline{\int_{x\in A}}g(x)$, with this I could not conclude that $g$ is integrable over $A$?
I need help for (b) and (c), could someone help me please? Thank you.