calculate
$\lim_{n\to\infty}\frac{n}{a^{n+1}}$( $a$+$\frac {a^2}{2} +.....+\frac{a^n}{n}$), where $a >1$.
here i take $x_n$ = $a$ + $\frac {a^2}{2} +.....+\frac{a^n}{n}$ and $y_n$ =$\frac {a^{n+1}}{n}$
now $\lim_{n\to\infty}$ =$\frac {x_n }{y_n}$ =$\frac{n}{a^{n+1}}a$ + $\frac{n}{a^{n+1}}\frac {a^2}{2}$ +...........+$\frac{n}{a^{n+1}}$$\frac{a^n}{n}$ = $\infty$
Is its corrects ????
Pliz help me
thanks in advance