I can calculate module exponentiation of square powers of $7$ modulo $35$ or things alike by hand but for computing modulo exponentiation of square powers of $7$ modulo $1000$, then I need a calculator. For instance
$$ \begin{alignat*}{2} 7^1&\equiv7&&\pmod{1000}\\ 7^2&\equiv49&&\pmod{1000}\\ 7^4&\equiv(7^2)^2\equiv49^2\equiv401&&\pmod{1000} \\ 7^8&\equiv(7^4)^2\equiv401^2\equiv801&&\pmod{1000} \\ 7^{16}&\equiv(7^8)^2\equiv801^2\equiv601&&\pmod{1000}\\ 7^{32}&\equiv(7^{16})^2\equiv601^2\equiv201&&\pmod{1000}\\ 7^{64}&\equiv(7^{32})^2\equiv201^2\equiv401&&\pmod{1000} \end{alignat*} $$ Is there an easier way without using a calculator?