Evaluation of $\displaystyle \int^{\infty}_{0}\frac{x^{p-1}}{1+x^q}dx$
My attempt: put $\displaystyle1+x^q=\frac{1}{t}$. Then $qx^{q-1}dx=-\frac{1}{t^2}dt$.
So integral $$I=\frac{1}{q}\int^{1}_{0}\frac{(1-t)^{\frac{p-q}{q}}}{t^{p-q}}dx$$
It seems that we can express it in terms of the beta or gamma functions.
Could some help me to explain it.