Let $D_{8}$ be group dihedral of order 8 and $C_{2}$ be cyclic group of order $2$. Then determine the number all automorphisms of $C_{2}\times D_{8}$. Can you determine automorphisms group of $C_{2}\times D_{8}$?
In general case we know that $\lvert\operatorname{Aut}(H\times K)\rvert\geqslant\lvert \operatorname{Aut}(H)\rvert\times\lvert \operatorname{Aut}(K)\rvert$ for finite groups $H$ and $K$. Also we know that if $(\lvert H\rvert, \lvert K\rvert)=1$, then $\lvert\operatorname{Aut}(H\times K)\rvert=\lvert \operatorname{Aut}(H)\rvert\times\lvert \operatorname{Aut}(K)\rvert$. If $(\lvert H\rvert, \lvert K\rvert)\neq 1$, then can we say that $\lvert\operatorname{Aut}(H\times K)\rvert>\lvert \operatorname{Aut}(H)\rvert\times\lvert \operatorname{Aut}(K)\rvert$?
Thank you