$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\lim_{n \to \infty}\sum_{k = 1}^{n}{\pars{-1}^{k + 1} \over 2k + 1} & =
\Re\bracks{\ic\,\lim_{n \to \infty}\sum_{k = 1}^{n}{\ic^{2k + 1} \over 2k + 1}} =
-\Im\bracks{\lim_{n \to \infty}\pars{%
\sum_{k = 3}^{2n + 1}{\ic^{k} \over k} -
\sum_{k = 2}^{n}{\ic^{2k} \over 2k}}}
\\[5mm] & =
-\Im\braces{\lim_{n \to \infty}\bracks{%
\pars{-\ic + {1 \over 2} + \sum_{k = 1}^{2n + 1}{\ic^{k} \over k}} -
{1 \over 2}\sum_{k = 2}^{n}{\pars{-1}^{k} \over k}}}
\\[5mm] & =
1 + \Im\ln\pars{1 - \ic} = \bbx{1 - {\pi \over 4}} \approx 0.2146
\end{align}