We have:
$$\log_a{x^n}=\log_a{\left( x\cdot x \cdot x \cdot ...\cdot x\right)}=\log_a(x)+\log_a(x)+...+\log_a(x)=n\log_a(x)$$
But, $$ \ln\left(-1\right)^2=\ln{\left(-1\right)^2}\\\ln(1)=2\ln(-1)\\ 0=2i\pi$$
or
$$ \log_a(-1)^3=\log_a(-1)^3 \\ \log_a(-1)=3\log_a(-1) \\1=3 $$
So, if the "identity" first written is just for $x\in\mathbb{R}| x>0$ tell me why, or where I'm I failing at!