Let $r_{n+1} = \sqrt{4-2^{1-n}}$. Then, $r_1 = \sqrt{2} \leq \sqrt{2} = s_1$.
Further, assume that $r_{n+1} = \sqrt{4-2^{1-n}} \leq \sqrt{2+s_n} = s_{n+1}$.
Then, $s_{n+2} = \sqrt{2+s_{n+1}} = \sqrt{2+\sqrt{2+s_n}} \geq \sqrt{2+\sqrt{4-2^{1-n}}}$ by hypothesis.
Since $n \geq 0 \geq -1$,
$1-n \geq -2n \Rightarrow 2^{1-n}\geq 2^{-2n} \Rightarrow 4+2^{2-n}-2^{1-n} \geq 4+(2^{-n})^2 \Rightarrow 4-2^{1-n}\geq (2-2^{-n})^2$.
Thus, $\sqrt{2+\sqrt{4-2^{1-n}}} \geq \sqrt{2+2-2^{-n}} = \sqrt{4-2^{-n}} = r_{n+2}$.
Thus, for all $n \geq 0$, $r_{n+1} \leq s_{n+1}$.
By squeeze theorem, since $r_{n+1} \rightarrow 2$ and $s_{n+1} \rightarrow L \leq 2$, $s_{n+1}\rightarrow 2$.