-1

Given: $$\ I(n) = \int_{0}^1 \frac {nx^{n-1}}{1+x}dx$$ Find $\lim_{n \to\infty} I(n)$.

Please help me with this. I cannot find any way to do this.

2 Answers2

7

Hint Use integration by parts. Indeed, $$ \int_{0}^1\frac{nx^{n-1}}{1+x}\,dx=\left[\frac{x^n}{1+x}\right]_{0}^1+\int_{0}^1\frac{x^n}{(1+x)^2}\,dx $$ Let $n\to\infty$ and apply the dominated convergence theorem to the second integral on the RHS.

robjohn
  • 345,667
  • can you elaborate it .. I dont know dominated convergence theorem – Satyam Kumar Mar 18 '18 at 15:59
  • 2
    @SatyamKumar this is why it is so important to include context and your efforts. Without it, you will get answers, (that users work hard to write!) which do not help you – operatorerror Mar 18 '18 at 17:18
  • @satyamkumar One doesn't need to apply the DCT. The remaining integral, call it $f_n$,.satisfies the inequalities $\frac1{4(n+1)}\le f_n\le \frac1{n+1}$. Do you understand why that is true? – Mark Viola Mar 18 '18 at 17:57
  • Yeah , i get it why f(n) lies in that interval . – Satyam Kumar Mar 19 '18 at 11:43
1

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\Large\left. a\right)}$

With Laplace's Method:

\begin{align} \lim_{n \to \infty}\int_{0}^{1}{nx^{n - 1} \over 1 + x}\,\dd x & = \lim_{n \to \infty}\bracks{n\int_{0}^{1}{\pars{1 - x}^{n - 1} \over 2 - x} \,\dd x} = \lim_{n \to \infty}\bracks{n\int_{0}^{1} {\exp\pars{\bracks{n - 1}\ln\pars{1 - x}} \over 2 - x}\,\dd x} \\[5mm] & = \lim_{n \to \infty}\bracks{n\int_{0}^{\infty} {\exp\pars{-\bracks{n - 1}x} \over 2 - 0}\,\dd x} = {1 \over 2}\lim_{n \to \infty}\pars{n\,{1 \over n - 1}} = \bbx{1 \over 2} \end{align}


$\ds{\Large\left. b\right)}$ \begin{align} \lim_{n \to \infty}\int_{0}^{1}{nx^{n - 1} \over 1 + x}\,\dd x & = \lim_{n \to \infty}\bracks{n\int_{0}^{1}{x^{n - 1} - x^{n} \over 1 - x^{2}} \,\dd x} = \lim_{n \to \infty}\bracks{n\int_{0}^{1}{x^{n/2 - 1} - x^{n/2 - 1/2} \over 1 - x}\,{1 \over 2}\dd x} \\[5mm] & = {1 \over 2}\lim_{n \to \infty}\bracks{n\pars{% \int_{0}^{1}{1 - x^{n/2 - 1/2} \over 1 - x}\,\dd x - \int_{0}^{1}{1 - x^{n/2 - 1} \over 1 - x}\,\dd x}} \\[5mm] & = {1 \over 2}\lim_{n \to \infty}\bracks{n\pars{H_{n/2 - 1/2} - H_{n/2 - 1}}} \qquad\pars{~H_{z}:\ Harmonic\ Number~} \\[5mm] & = \bbx{1 \over 2} \end{align}

Note that $\ds{H_{z} \sim \ln\pars{z} + \gamma + {1 \over 2z} - {1 \over 12z^{2}}}$ as $\ds{\verts{z} \to \infty.\quad}$ $\ds{\gamma}$ is the Euler-Mascheroni Constant.

Felix Marin
  • 89,464