Asymptotic Approximation
Since
$$
\begin{align}
\frac{\,\frac{(3n)!}{n!^3}\,}{\frac{(3n-3)!}{(n-1)!^3}}
&=\frac{3(3n-1)(3n-2)}{n^2}\\
&=\color{#C00}{27}\,\frac{\color{#090}{n-\frac13}}{n}\,\frac{\color{#00F}{n-\frac23}}{n}\tag1
\end{align}
$$
we get
$$
\begin{align}
\frac{(3n)!}{n!^3}
&=\color{#C00}{27^n}\color{#090}{\frac{\Gamma\!\left(n+\frac23\right)}{\Gamma\!\left(\frac23\right)}}\color{#00F}{\frac{\Gamma\!\left(n+\frac13\right)}{\Gamma\!\left(\frac13\right)}}\frac1{\Gamma(n+1)^2}\tag2\\
&=\frac{27^n}{\Gamma\!\left(\frac23\right)\Gamma\!\left(\frac13\right)}\frac{\Gamma\!\left(n+\frac23\right)}{\Gamma(n+1)}\frac{\Gamma\!\left(n+\frac13\right)}{\Gamma(n+1)}\tag3\\
&\sim\frac{27^n}{\Gamma\!\left(\frac23\right)\Gamma\!\left(\frac13\right)}\,n^{-1/3}n^{-2/3}\tag4\\
&=\frac{27^n\sin(\pi/3)}{\pi}\frac1n\tag5\\[3pt]
&=\frac{\sqrt3}{2\pi}\frac{27^n}{n}\tag6
\end{align}
$$
Explanation:
$(2)$: take the product of $(1)$
$(3)$: rearrange
$(4)$: apply Gautschi's Inequality
$(5)$: apply Euler's Reflection Formula
$(6)$:evaluate
A Simpler Proof Of Divergence
By $(1)$, the ratio of the terms of the sequence tends to $27$. This means the sequence diverges.