-2

$$\int_{\frac {-1}{\sqrt 3}}^{\frac {1}{\sqrt 3}} \frac {x^4}{1-x^4}\cos^{-1}(\frac {2x}{1+x^2})dx$$

As the limits are $a$ and $-a$, I try to figure out what is $f(-x)$,but the function is neither becoming $-f(x)$ or $f(x)$. Note that ,I first converted $cos^{-1}x$ to $sin^{-1}x$.

Leyla Alkan
  • 2,451

1 Answers1

1

Like Evaluate the integral $\int^{\frac{\pi}{2}}_0 \frac{\sin^3x}{\sin^3x+\cos^3x}dx$,

$$I=\int_{-a}^a\dfrac{x^{2n}}{1-x^{2n}}\arccos\dfrac{2x}{1+x^2}dx$$

$$=\int_{-a}^a\dfrac{x^{2n}}{1-x^{2n}}\arccos\dfrac{(-2x)}{1+x^2}dx$$

Using How do I prove that $\arccos(x) + \arccos(-x)=\pi$ when $x \in [-1,1]$?,

$$I+I=\pi\int_{-a}^a\dfrac{x^{2n}}{1-x^{2n}}dx$$

Now $$\int\dfrac{x^{2n}}{1-x^{2n}}dx=\int\dfrac{dx}{1-x^{2n}}-\int dx$$