How can I show (using upper-, lower-, Riemann-sums) that $$\lim_{n \rightarrow \infty}\frac{1^k+2^k+...+n^k}{n^{k+1}}=\frac{1}{k+1}$$ with $k, n \in \mathbb{N}$?
The hint I received is that $\frac{x^{k+1}}{k+1}$ is a antiderivative of $x^k$ and $\int_a^bf(x)\mathrm{d}x=F(b)-F(a)$.