Is this simple proof for $\ln x \leq x-1$ valid?
Proof:
Since $\ln$ is concave, let $y, x \in \mathbb{R}_{++}.$ We have that $\ln(y) \leq \ln(x) + \frac{d\ln x}{dx}(y-x)$. Since this is valid $\forall x, y \in \mathbb{R}_{++}$, it must be valid for an arbitrary $y$ and $x=1$. Then, we get that $\ln(y) \leq \frac{1}{x}(y-x) \Rightarrow \ln(y) \leq y-1$.
Thanks