Firstly, we will study if the serie
$$\sum_{k=2}^\infty\left|\frac{\sin\left(\frac{\pi}{2}+k\pi\right)}{\sqrt{k}\ln(k)}\right|$$
converges, because if it does, directly we have that our original one does too.
Note that
$$\sin\left(\frac{\pi}{2}+k\pi\right)=(-1)^{k}$$
so we have that
$$\sum_{k=2}^\infty\left|\frac{\sin\left(\frac{\pi}{2}+k\pi\right)}{\sqrt{k}\ln(k)}\right|=\sum_{k=2}^\infty\left|\frac{1}{\sqrt{k}\ln(k)}\right|=\sum_{k=2}^\infty\frac{1}{\sqrt{k}\ln(k)}$$
Now, we're going to use the integral test for convergence
https://en.wikipedia.org/wiki/Integral_test_for_convergence
As the integral
$$\int \frac{1}{\sqrt{x}\ln(x)}dx=\int_{\ln(2)}^\infty \frac{e^t}{t\sqrt{e^t}}dt =\int_{\ln(2)}^\infty \frac{1}{t\sqrt{e^{-t}}}dt $$
has not a primitive on elementary function, we can proceed comparing this integral with another and apply the comparison test for improper integrals
http://tutorial.math.lamar.edu/Classes/CalcII/ImproperIntegralsCompTest.aspx
Comparing it with $g(t)=\frac{1}{t}$, we get that
$$\lim_{t\to \infty} \frac{\frac{1}{t\sqrt{e^{-t}}}}{\frac{1}{t}}=\lim_{t\to \infty} \frac{1}{\sqrt{e^{-t}}}=+\infty$$
and as $g$ diverges, $f$ does it too.