$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Note that $\ds{\,\mrm{I}\pars{0} = 0}$.
\begin{align}
\left.\vphantom{\large A}\mrm{I}\pars{x}\right\vert_{\ x\ \not=\ 0} & \equiv
\int_{0}^{1}{\sin\pars{\pi xs}\sin\pars{\pi x\bracks{1 - s}} \over
\sin\pars{\pi s}}\,\dd s =
{1 \over \pi}\int_{0}^{\pi}
{\sin\pars{xs}\sin\pars{x\bracks{\pi - s}} \over
\sin\pars{s}}\,\dd s
\\[5mm] & =
{2 \over \pi}\int_{0}^{\pi/2}
{\sin\pars{\verts{x}\bracks{\pi - s}}\sin\pars{\verts{x}s} \over \sin\pars{s}}\,\dd s
\\[5mm] & =
{1 \over \pi}\int_{0}^{\pi/2}
{\cos\pars{\pi\verts{x} - 2\verts{x}s} - \cos\pars{\pi\verts{x}} \over \sin\pars{s}}\,\dd s
\\[5mm] & =
{1 \over \pi}\,\Re\int_{0}^{\pi/2}
{\expo{\ic\pars{2\verts{x}s - \pi\verts{x}}} - \expo{-\ic\pi\verts{x}} \over
\pars{\expo{\ic s} - \expo{-\ic s}}/\pars{2\ic}}\,\dd s
\\[5mm] & =
{2 \over \pi}\,\Re\bracks{\expo{-\ic\pi\verts{x}}\int_{0}^{\pi/2}
{1 - z^{2\verts{x}} \over 1 - z^{2}}\,\dd z}_{z\ =\ \exp\pars{\ic s}}
\\[1cm] & =
{2 \over \pi}\,\Re\bracks{-\expo{-\ic\pi\verts{x}}\int_{1}^{0}
{1 - y^{2\verts{x}}\expo{\ic\pi\verts{x}} \over 1 + y^{2}}\,\ic\,\dd y
-\expo{-\ic\pi\verts{x}}
\int_{0}^{1}{1 - X^{2\verts{x}} \over 1 - X^{2}}\,\dd X}
\\[5mm] & =
{2 \over \pi}\,\sin\pars{\pi\verts{x}}\
\underbrace{\int_{0}^{1}{\dd y \over 1 + y^{2}}}_{\ds{=\ {\pi \over 4}}}\ -\
{1 \over \pi}\,\cos\pars{\pi x}\
\int_{0}^{1}{X^{-1/2} - X^{\verts{x} - 1/2} \over 1 - X}\,\dd X
\\[5mm] & =
{1 \over 2}\,\sin\pars{\pi\verts{x}} -
{1 \over \pi}\,\cos\pars{\pi x}\bracks{%
\int_{0}^{1}{1 - X^{\verts{x} - 1/2} \over 1 - X}\,\dd X -
\int_{0}^{1}{1 - X^{-1/2} \over 1 - X}\,\dd X}
\\[5mm] & =
{1 \over 2}\,\sin\pars{\pi\verts{x}} -
{1 \over \pi}\,\cos\pars{\pi x}\bracks{%
\Psi\pars{\verts{x} + {1 \over 2}} - \Psi\pars{1 \over 2}}
\end{align}
Note that $\ds{\Psi\pars{1 \over 2} = -\gamma - \ln\pars{2}}$ such that
$$
\bbx{\mrm{I}\pars{x} =
\bracks{x \not= 0}\braces{%
{1 \over 2}\,\sin\pars{\pi\verts{x}} -
{1 \over \pi}\,\cos\pars{\pi x}\bracks{%
\Psi\pars{\verts{x} + {1 \over 2}} + \gamma + \ln\pars{2}}}}
$$