Can anyone help me in proving the following identity: For any $k\in\mathbb{N}$, $$ \sum_{n=0}^{k}\frac{(-1)^n(k-n)^{2k}}{n!(2k-n)!}=\frac{1}{2}. $$ Thank You very much in advance.
-
4Please edit the question to show us what you have tried. – Ethan Bolker Mar 14 '18 at 17:12
-
Seems like you should try induction – gen-ℤ ready to perish Mar 14 '18 at 17:26
3 Answers
Note that by letting $m=2k-n$ we get $$\sum_{n=0}^{k}\frac{(-1)^n(k-n)^{2k}}{n!(2k-n)!}=\sum_{m=k}^{2k}\frac{(-1)^{m}(k-m)^{2k}}{(2k-m)!(m)!}$$ Hence $$\frac{1}{(2k)!}\sum_{n=0}^{2k}(-1)^n\binom{2k}{n}(k-n)^{2k}=\sum_{n=0}^{2k}\frac{(-1)^n(k-n)^{2k}}{n!(2k-n)!}=2\sum_{n=0}^{k}\frac{(-1)^n(k-n)^{2k}}{n!(2k-n)!}.$$ So it suffices to show that (in our case $j=2k$, and $x=k$) $$\sum_{n=0}^{j}(-1)^n\binom{j}{n}(x-n)^{j}=j!$$ This is a well known identity:
1) Combinatorial proof of $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(l-k)^n=n!$, using inclusion-exclusion
2) Expressing a factorial as difference of powers: $\sum_{r=0}^{n}\binom{n}{r}(-1)^r(l-r)^n=n!$?

- 145,942
-
I got the first line clearly, but not the second line. Why the second line is sufficient? Can you elaborate please? Thanks... – Mathlover Mar 14 '18 at 18:01
-
-
Clear, but how to prove the last equality? I can take $x=\frac{j}{2}$. Then how to proceed? Thanks in advance... – Mathlover Mar 14 '18 at 18:24
-
-
-
We use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write e.g. \begin{align*} n![z^n]e^{kz}=k^n\tag{1} \end{align*}
We obtain (interchanging $k$ and $n$ for convenience only) \begin{align*} \color{blue}{\sum_{k=0}^n}&\color{blue}{(-1)^k\frac{(n-k)^{2n}}{k!(2n-k)!}}\\ &=\sum_{k=0}^n(-1)^{n-k}\frac{k^{2n}}{(n-k)!(n+k)!}\tag{2}\\ &=\frac{1}{(2n)!}\sum_{k=0}^n(-1)^{n-k}\binom{2n}{n-k}k^{2n}\tag{3}\\ &=\frac{1}{2(2n)!}\sum_{k=-n}^n(-1)^{n-k}\binom{2n}{n-k}k^{2n}\tag{4}\\ &=\frac{1}{2(2n)!}\sum_{k=0}^{2n}(-1)^k\binom{2n}{k}(k-n)^{2n}\tag{5}\\ &=\frac{1}{2}\sum_{k=0}^{2n}(-1)^k\binom{2n}{k}[z^{2n}]e^{(k-n)z}\tag{6}\\ &=\frac{1}{2}[z^{2n}]e^{-nz}\sum_{k=0}^{2n}\binom{2n}{k}(-e^z)^k\tag{7}\\ &=\frac{1}{2}[z^{2n}]e^{-nz}(1-e^z)^{2n}\tag{8}\\ &=\frac{1}{2}[z^{0}]e^{-nz}\tag{9}\\ &\,\,\color{blue}{=\frac{1}{2}} \end{align*} and the claim follows.
Comment:
In (2) we exchange the order of summation $k\to n-k$.
In (3) we use the binomial coefficient notation.
In (4) we observe that each summand is symmetric with respect to $k$ and we use this property to sum the half of the summands from $-n$ to $n$.
In (5) we shift the index to start from $k=0$ and use the binomial identity $\binom{p}{q}=\binom{p}{p-q}$.
In (6) we apply the coefficient of operator according to (1).
In (7) we use the linearity of the coefficient of operator and do some arrangements as preparation for the next step.
In (8) we use the binomial theorem.
In (9) we note that $[z^{2n}](1-e^z)^{2n}=[z^{2n}](z+\frac{z^2}{2!}+\cdots)^{2n}=1$.

- 108,315
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\left.S_{k} \equiv \sum_{n = 0}^{k}{\pars{-1}^{n}\pars{k - n}^{2k} \over n!\pars{2k - n}!}\right\vert_{\ k\ \in\ \mathbb{N}_{\ \geq\ 1}} = {1 \over 2}:\ {\Large ?}}$.
Note that $\ds{S_{k} \equiv \sum_{n = 0}^{\color{red}{k}}{\pars{-1}^{n}\pars{k - n}^{2k} \over n!\pars{2k - n}!} = {1 \over \pars{2k}!}\sum_{n = 0}^{\color{red}{k - 1}} {2k \choose n}\pars{-1}^{n}\pars{k - n}^{2k}\ \mbox{with}\ \color{red}{k} \geq 2}$.
For $\ds{\color{red}{k} = 1}$, the sum $\ds{S_{1}}$ is already equal to $\ds{\large{1 \over 2}}$ !!!.
$$ \mbox{Note that}\quad\bbx{% \sum_{n = 0}^{k - 1}{\pars{-1}^{n}\pars{k - n}^{2k} \over n!\pars{2k - n}!} = {1 \over 2}\sum_{n = 0}^{2k}{\pars{-1}^{n}\pars{k - n}^{2k} \over n!\pars{2k - n}!}} $$
\begin{align} &\sum_{n = 0}^{k - 1}{\pars{-1}^{n}\pars{k - n}^{2k} \over n!\pars{2k - n}!} = {1 \over 2\pars{2k}!}\sum_{n = 0}^{2k}{2k \choose n}\pars{-1}^{n} \bracks{\pars{2k}!\oint_{\verts{z}\ =\ 1}{\expo{\pars{n - k}z} \over z^{2k + 1}} \,{\dd z \over 2\pi\ic}} \\[5mm] = &\ {1 \over 2}\oint_{\verts{z}\ =\ 1} {\expo{-kz} \over z^{2k + 1}}\sum_{n = 0}^{2k}{2k \choose n}\pars{-\expo{z}}^{n} \,{\dd z \over 2\pi\ic} = {1 \over 2}\oint_{\verts{z}\ =\ 1} {\expo{-kz} \over z^{2k + 1}}\pars{1 - \expo{z}}^{2k} \,{\dd z \over 2\pi\ic} \\[5mm] = &\ {1 \over 2}\oint_{\verts{z}\ =\ 1} {\expo{-kz} \over z^{2k + 1}}\bracks{\pars{2k}!\sum_{n = 0}^{\infty} {n \brace 2k}{z^{n} \over n!}}\,{\dd z \over 2\pi\ic} = {\pars{2k}! \over 2}\sum_{n = 2k}^{\infty} {n \brace 2k}{1 \over n!}\oint_{\verts{z}\ =\ 1} {\expo{-kz} \over z^{2k - n + 1}}\,{\dd z \over 2\pi\ic} \\[5mm] = &\ {\pars{2k}! \over 2}\sum_{n = 0}^{\infty} {n + 2k \brace 2k}{1 \over \pars{n + 2k}!}{\pars{-kz}^{-n} \over \pars{-n}!} = \left.{\pars{2k}! \over 2} {n + 2k \brace 2k}{1 \over \pars{n + 2k}!}{\pars{-kz}^{-n} \over \pars{-n}!} \right\vert_{\ n\ =\ 0} \\[5mm] = & \bbx{1 \over 2} \end{align}

- 89,464