\begin{align*}
\int_{1}^{\infty}\dfrac{\sin u}{2\sqrt{u}}du&=\dfrac{-\cos u}{2\sqrt{u}}\bigg|_{u=1}^{u=\infty}-\dfrac{1}{4}\int_{1}^{\infty}\dfrac{\cos u}{u^{3/2}}du\\
&=\dfrac{\cos 1}{2}-\dfrac{1}{4}\int_{1}^{\infty}\dfrac{\cos u}{u^{3/2}}du,
\end{align*}
where
\begin{align*}
\int_{1}^{\infty}\left|\dfrac{\cos u}{u^{3/2}}\right|du\leq\int_{1}^{\infty}\dfrac{1}{u^{3/2}}du<\infty.
\end{align*}
Note that
\begin{align*}
\int_{0}^{1}\sin(x^{2})dx
\end{align*}
exists by the continuity of $x\rightarrow\sin(x^{2})$ on $[0,1]$.
It is not absolutely convergent since
\begin{align*}
\int_{1}^{\infty}\dfrac{|\sin u|}{\sqrt{u}}du&\geq\sum_{n=1}^{\infty}\int_{n\pi+\pi/6}^{(n+1)\pi-\pi/6}\dfrac{|\sin u|}{\sqrt{u}}du\\
&\geq\sum_{n=1}^{\infty}\int_{n\pi+\pi/6}^{(n+1)\pi-\pi/6}\dfrac{1}{2\sqrt{u}}du\\
&\geq\sum_{n=1}^{\infty}\int_{n\pi+\pi/6}^{(n+1)\pi-\pi/6}\dfrac{1}{2\sqrt{(n+1)\pi-\pi/6}}du\\
&\geq\sum_{n=1}^{\infty}\dfrac{2\pi}{3}\dfrac{1}{2\sqrt{(n+1)\pi-\pi/6}}\\
&=\infty.
\end{align*}