0

This sum: $$\sum_{n=0}^\infty n\cdot\left(\frac{1}{2}\right)^{n-1}$$ can be calculated using this $\sum_{n=0}^\infty a^n=\frac{1}{1-a}$ ; $a<1$ cause we can calculate the sum $\sum_{n=0}^\infty \left(\frac{1}{2}\right)^{n}$ and then calculate it's derivative.

Can we calculate this sum: $$\sum_{n=0}^\infty (n-4)\cdot \left(\frac{1}{2}\right)^n$$ using a similar method?

If not, how can I calculate it?

1 Answers1

1

Note that

$$\sum_{n=0}^\infty (n-4)\cdot \left(\frac{1}{2}\right)^n=\sum_{n=0}^\infty n\cdot \left(\frac{1}{2}\right)^n-4\sum_{n=0}^\infty \left(\frac{1}{2}\right)^n$$

then use

$$\sum_{n=0}^{\infty} n x^n =\frac{x}{(1-x)^2}$$

user
  • 154,566