This sum: $$\sum_{n=0}^\infty n\cdot\left(\frac{1}{2}\right)^{n-1}$$ can be calculated using this $\sum_{n=0}^\infty a^n=\frac{1}{1-a}$ ; $a<1$ cause we can calculate the sum $\sum_{n=0}^\infty \left(\frac{1}{2}\right)^{n}$ and then calculate it's derivative.
Can we calculate this sum: $$\sum_{n=0}^\infty (n-4)\cdot \left(\frac{1}{2}\right)^n$$ using a similar method?
If not, how can I calculate it?