2

I am stuck in one step of an application of Borel Cantelli Lemma.

I am trying to show the following : if $a_n$ is a sequence such that $0 < a_n < 1$ for all $n$ then $\prod_{n=1}^\infty 1 - a_n = 0 \Rightarrow \sum_{n=1}^\infty a_n = +\infty$. By using the log I can show that $\prod_{n=1}^\infty 1 - a_n = 0 \Leftrightarrow \sum_{n=1}^\infty \log(1-a_n) = - \infty $ (since $1-a_n > 0, \forall n$) but I cannot conclude about the divergence of $\sum_{n=1}^\infty a_n$. Any hint ?

DimSum
  • 555

1 Answers1

3

Hint:

If $\sum_{n=1}^\infty a_n < \infty$, given $\epsilon \in (0,1)$ there exists $N$ such that $\sum_{n=N}^\infty a_n < \epsilon$, and for all $m > N$

$$\prod_{n= N}^m(1-a_n) > 1 - \sum_{n=N}^ma_n > 1 - \epsilon > 0$$

RRL
  • 90,707
  • Ok I see that prove my point in that way $\prod_{n= 1}^\infty(1-a_n)$ cannot be zero but how do you prove $\prod_{n= N}^m(1-a_n) > 1 - \sum_{n=N}^ma_n$ ? – DimSum Mar 13 '18 at 17:07
  • 3
    @DimitriMeunier: $(1-a_N)(1-a_{N+1}) = 1 - (a_N + a_{N+1}) + a_N a_{N+1} > 1 - (a_N + a_{N+1})$. By induction $\prod_{n= N}^{m+1} (1- a_n) = \prod_{n= N}^{m} (1- a_n) (1 - a_{m+1}) > ( 1 - \sum_{n=N}^m a_n)(1 - a_{m+1}) > \ldots$. – RRL Mar 13 '18 at 17:22