Query 1
Using the formula
$$ \sum_{j=1}^{n} \sin(jt) = \frac{\cos\frac{t}{2}-\cos\left(\left(n+\frac{1}{2}\right)t\right)}{2\sin\frac{t}{2}} $$
evaluate $\int_{0}^{\frac{\pi}{2}} \sin(x) \space dx$ as the limit of a Riemann Sum.
$\underline{Attempt}$
\begin{align} \int_{0}^{\frac{\pi}{2}} \sin(x) \space dx &= \frac{\pi}{2n} \lim_{n\to \infty} \sum_{j=1}^{n} \sin\left(j\frac{\pi}{2n}\right) \leftarrow(\textit {Let $t$ = $\frac{\pi}{2n}$)} \\ &= \frac{\pi}{2n} \lim_{n\to \infty} \frac{\cos\frac{\pi}{4n}-\cos\left(\left(n+\frac{1}{2}\right)\left(\frac{\pi}{2n}\right)\right)}{2\sin\frac{\pi}{4n}} \\ &= \lim_{n\to \infty} \left(\frac{\pi}{2n}\right)\frac{\cos\frac{\pi}{4n}-\cos\left(\frac{\pi}{2}+\frac{\pi}{4n}\right)}{2\sin\frac{\pi}{4n}} \\ &= \lim_{n\to \infty} \left(\frac{\pi}{2n}\right)\frac{\cos\frac{\pi}{4n}-\sin\frac{\pi}{4n}}{2\sin\frac{\pi}{4n}} \end{align}
Query 2
Using the result
$ \forall k \in \mathbb Z^+ ,$ $$ \\ \sum_{j=1}^{n} j^k = \frac{n^{k+1}}{k+1}+\frac{n^k}{2}+P_{k-1}(n), $$ where $P_{k-1}$ is a polynomial of degree at most $k-1$, deduce the result: $$ \int_{0}^{a} x^k \space dx = \frac{a^{k+1}}{k+1} $$
$\underline{Comment}$ : I do not understand why only the first portion of the summation result is used.
Thanks!