Determinant of the following $n \times n$ matrix: $$\begin{pmatrix} 2\cos \theta& 1 & 0 & \ldots & \ldots & 0 \\ 1 & 2\cos \theta & 1 & \ddots & & \vdots \\ 0 & 1& 2\cos \theta & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 2\cos \theta & 1 \\ 0 & \ldots & \ldots & 0 & 1 & 2\cos \theta\\ \end{pmatrix}.$$
Letting given matrix determinant as $D_n$, I find a relation $D_n-2\cos \theta D_{n-1}+D_{n-2}=0$, but after that how I calculate $D_n?$ Please help.