We know that,
$$\sinh x = \frac{e^{x} - e^{-x}}{2}$$
Going by the definition of $e^{ix}$,
$$
\begin{aligned}
e^{ix} = \cos x + i\sin x \\
e^{-ix} = \cos x - i\sin x
\end{aligned}
$$
Putting $\pmb{ix}$ in place of $\pmb{x}$,
$$
\left.
\begin{aligned}
e^{i(ix)} = \cos (ix) + i\sin (ix) \\
e^{-i(ix)} = \cos (ix) - i\sin (ix)
\end{aligned}
\right\} \tag{1}\label{1}
$$
Now we know,
$$i^2 = -1 \tag{2}\label{2}$$
$\eqref{2}\; in\; \eqref{1}$,
$$e^{-x} = \cos ix + i\sin ix \tag{3}\label{3}$$
$$e^{x} = \cos (ix) - i\sin (ix) \tag{4}\label{4}$$
Finally, subtract $\eqref{3}\; from\; \eqref{4}$ and divide by two, to get in the form of $\pmb{\sinh x}$,
$$\frac{e^{x} - e^{-x}}{2} =\sinh x=\frac{-i\sin (ix) - i\sin (ix)}{2}$$
$$\bbox[5px,border:2px solid red]
{
\sinh x=-i\sin(ix)
}
$$
Since, $\frac{1}{i}=-i$, we can also have,
$$\bbox[5px,border:2px solid red]
{
\sinh x=\frac{\sin(ix)}{i}
}
$$
I know this isn't strictly the relation between $\sinh x$ and $\pmb{\sin x}$, in the sense that this involves a complex part.
Hope this helps someone who needs this relationship between the two functions.