Possible Duplicate:
Prove that partial sums of $\sum_{n=1}^{\infty}{z^n}, z \in \mathbb{C}, |z|=1$ are bounded
Show $$\sum_{n=1}^N e^{i n\theta}.$$ is bounded for $ 0< \theta < 2 \pi$ and $ \forall N \in \{1,2,3,\ldots\}$
Possible Duplicate:
Prove that partial sums of $\sum_{n=1}^{\infty}{z^n}, z \in \mathbb{C}, |z|=1$ are bounded
Show $$\sum_{n=1}^N e^{i n\theta}.$$ is bounded for $ 0< \theta < 2 \pi$ and $ \forall N \in \{1,2,3,\ldots\}$
Hint: $$\sum_{n=1}^N e^{in\theta}\ =\frac{e^{i(N+1)\theta}-e^{i\theta}}{e^{i\theta}-1}$$ Clearly, the RHS is bounded
I answered this question , when the question was saying show that $\sum_{n=1}^N e^{in\theta}\ $ is bounded.
You can conclude it based on Abel partial summation (The result is termed as generalized alternating test or Dirichlet test). We will prove the generalized statement first.
Consider the sum $S_N = \displaystyle \sum_{n=1}^N a(n)b(n)$. Let $B(n) = \displaystyle \sum_{n=1}^N b(n)$. If $a(n) \downarrow 0$ and $B(n)$ is bounded, then the series $\displaystyle \sum_{n=1}^{\infty} a(n)b(n)$ converges absolutely.
First note that from Abel summation, we have that $$\sum_{n=1}^N a(n) b(n) = \sum_{n=1}^N a(n)(B(n)-B(n-1)) = \sum_{n=1}^{N} a(n) B(n) - \sum_{n=1}^Na(n)B(n-1)\\ = \sum_{n=1}^{N} a(n) B(n) - \sum_{n=0}^{N-1}^Na(n+1)B(n) = a(N) B(N) - a(1)B(0) + \sum_{n=1}^{N-1} B(n) (a(n)-a(n+1))$$ Now if $B(n)$ is bounded i.e. $\vert B(n) \vert \leq M$ and $a(n)$ is decreasing, then we have that $$\sum_{n=1}^{N-1} \left \vert B(n) \right \vert (a(n)-a(n+1)) \leq \sum_{n=1}^{N-1} M (a(n)-a(n+1))\\ = M (a(1) - a(N)) \leq Ma(1)$$ Hence, we have that $\displaystyle \sum_{n=1}^{N-1} \left \vert B(n) \right \vert (a(n)-a(n+1))$ converges and hence $$\displaystyle \sum_{n=1}^{N-1} B(n) (a(n)-a(n+1))$$ converges absolutely. Now since $$\sum_{n=1}^N a(n) b(n) = a(N) B(N) + \sum_{n=1}^{N-1} B(n) (a(n)-a(n+1))$$ we have that $\displaystyle \sum_{n=1}^N a(n)b(n)$ converges absolutely. In your case, $b(n) = \exp(in \theta)$. Hence, $$B(N) = \sum_{n=1}^N b(n) = \sum_{n=1}^N \exp(in \theta) = \exp(i\theta) \left(\dfrac{\exp(i N \theta)-1}{\exp(i \theta) - 1} \right)$$which is bounded for all $\theta \in (0, 2\pi)$. Hence, we have that $$\sum_{n=1}^N a(n) \exp(i n\theta)$$ converges.
The Generalized Dirichlet Test states that if $$ \left|\sum_{k=1}^na_k\right|\le A\lt\infty\tag{1} $$ independent of $n$ and $$ \sum_{k=1}^\infty|b_k-b_{k+1}|=B\lt\infty\tag{2} $$ and $$ \lim_{k\to\infty}b_k=0\tag{3} $$ then $$ \sum_{k=1}^\infty a_kb_k\quad\text{converges and}\quad\left|\sum_{k=1}^\infty a_kb_k\right|\le AB\tag{4} $$
This follows using $$ A_n=\sum_{k=1}^na_k\tag{5} $$ where $A_0=0$, and by considering $$ \begin{align} \sum_{k=1}^na_kb_k &=\sum_{k=1}^n(A_k-A_{k-1})b_k\\ &=\sum_{k=1}^nA_kb_k-\sum_{k=0}^{n-1}A_kb_{k+1}\\ &=A_nb_n+\sum_{k=1}^{n-1}A_k(b_k-b_{k+1})\tag{6} \end{align} $$ $(1)$ says that $|A_n|\le A$, then $(2)$, $(3)$, and $(6)$ yield $(4)$.
Noting that $$ \begin{align} \left|\sum_{k=1}^ne^{i\theta}\right| &=\left|\frac{e^{i(n+1)\theta}-e^{i\theta}}{e^{i\theta}-1}\right|\\ &\le\frac2{|e^{i\theta}-1|} \end{align} $$ The Generalized Dirichlet's Test says that $$ \sum_{k=1}^\infty a_ke^{ik\theta} $$ converges as long as $\theta\ne0\pmod{2\pi}$ and $a_k$ satisfies $(2)$ and $(3)$ above.
Hint: The case $\theta = \pi$ has most probably been done as a theorem in your class. Try adapting that solution.
Hint: Try the ratio test and alternating series test. You'll have to use the version where you use the $\limsup$ and $\liminf$.