A preferable way to me:
Prop: for $c \geq 0$ finite, with $f,g:\mathbb{R}\rightarrow\mathbb{R^+}$ if $$ \lim_{n\rightarrow\infty}\frac{f(n)}{g(n)} \leq c $$ then $ f \in O(g) $.
Intuitively, this makes sense: for large enough $n$, you get $f(n) \lesssim cg(n)$, which implies $f\in O(g)$. (Note its converse doesn't hold, e.g. see here)
Then you get that
Cor: for real $b>1$, $d>0$, we have that $n^d \in O(b^n)$.
Proof: we just have to show the proposition above applies. Assume $n > 1$. We apply L'Hopital's rule repeatedly. Let $k\in\mathbb{N}$ be such that $q=d-k < 0$. This exists because $d>0$. We apply the rule $k$ times:
\begin{align}
\lim_{n\rightarrow\infty}\frac{n^d}{b^n}
&= \lim_{n\rightarrow\infty}\frac{dn^{d-1}}{\ln(b)b^n} \\
&= \vdots \\
&= \frac{d!/(d-k)!}{(\ln b)^k} \lim_{n\rightarrow\infty}\frac{n^{d-k}}{b^n} \\
&= \frac{d!/(d-k)!}{(\ln b)^k} \lim_{n\rightarrow\infty}\underbrace{\frac{1}{n^{-q}b^n}}_{-q \geq 0} \\
&\leq \frac{d!/(d-k)!}{(\ln b)^k} \lim_{n\rightarrow\infty}\frac{1}{b^n} \\
&= 0
\end{align}
See also this and this.
I also tried to complete your work, but an issue occurs. Not sure if this approach below is correct in all cases anyway. Let $ \tilde{c} = d\log_b C $ and $k = \log_b 2^d$.
\begin{align}
n &\leq C 2^n \\
\log_b n &\leq \log_b C + n\log_b 2 \\
\log_b n^d &\leq d\log_b C + n\log_b 2^d \\
\log_b n^d &\leq \tilde{c} + kn \\
n^d &\leq b^{\tilde{c}} b^{kn} \\
\frac{n^{d/k}}{b^{\tilde{c}/k}} &= \frac{n^{d/k}}{s} \leq b^n \\
n^{d/k} &\leq s b^n
\end{align}
Since $d >0$, we must have $k>0$.
Case 1: $k \in (0,1]$. Then $n^d < n^{d/k} \leq sb^n$. So it's true for such $k$.
Case 2: $k > 1$. Then $ n^{d/k} \leq n^d $. It's not immediately clear to me how to easily get $ n^{d/k} \leq b^n$ from here though.