Wolfram Alpha says that
$$\sum_{n=1}^{\infty} \frac{1}{n^2-3n+3} = 1 + \frac{\pi \tanh \left ( \frac{\sqrt{3}\pi}{2} \right )}{\sqrt{3}}$$
However I am unable to get it. It is fairly routine to prove that
$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2-3n+3} = \frac{2\pi \tanh \left ( \frac{\sqrt{3}\pi}{2} \right )}{\sqrt{3}}$$
by using complex analysis ( contour integration ) but honestly I am stuck how to retrieve the original sum. Split up , the last sum gives:
\begin{align*} \sum_{n=-\infty}^{\infty} \frac{1}{n^2-3n+3} &= \sum_{n=-\infty}^{-1} \frac{1}{n^2-3n+3} + \frac{1}{3} + \sum_{n=1}^{\infty} \frac{1}{n^2-3n+3} \\ &=\frac{1}{3} +\sum_{n=1}^{\infty} \frac{1}{n^2+3n+3} + \sum_{n=1}^{\infty} \frac{1}{n^2-3n+3} \\ &=\frac{1}{3}+ \sum_{n=1}^{\infty} \left [ \frac{1}{n^2-3n+3} + \frac{1}{n^2+3n+3} \right ] \end{align*}
Am I overlooking something here?
P.S: Working with digamma on the other hand I am not getting the constant. I'm getting $\frac{1}{3}$ instead.