There is a standard (first year calculus) method for comparing the sum and integral of the same function, slightly different versions giving inequalites in both directions. I put a diagram for one of the directions below. The pair of inequalities found are a finite version of the "integral test" for infinite series.
$$ n (-1 + \log n ) = n \log n - n = \int_1^n \; \; \log x \; \; dx < \sum_{j = 2}^n \log j \; = \log n! $$
Shifting , we get
$$ \sum_{j = 2}^n \log j \; = \log n! < \int_1^{n+1} \; \; \log x \; \; dx = (n +1) \log (n+1) - (n+1) = (n+1)(-1 + \log(n+1))$$
The reciprocal of the question,
$$ \frac{n (-1+\log n)}{n \log n} < \frac{\log n!}{n \log n} < \frac{(n+1)(-1 + \log (n+1))}{n \log n} $$
When $n > 1$ we get $n+1 < 2n,$ so $\log (n+1) < \log (2n) < \log 2 + \log n < 1 + \log n, $ so for $n > 1$ we have $-1 + \log(n+1) < \log n.$
$$ $$
$$ \frac{ (-1+\log n)}{ \log n} < \frac{\log n!}{n \log n} < \frac{(n+1)\log n}{n \log n} = \frac{n+1}{n} $$
$$ $$
$$ 1 - \frac{ 1}{ \log n} \; \; < \; \; \frac{\log n!}{n \log n} \; \; < \; \; 1 + \frac{1}{n} $$
$$ $$

