If $X$ is a nonnegative integer valued random variable, show that
$$\mathbb{E}(X) = \sum_{i=1}^\infty\mathbb{P}(X\geq i) = \sum_{i=0}^\infty \mathbb{P}(X\geq i). $$
I'm not sure how to do this. I only know the definition that $$\mathbb{E}(X):= \sum_{i=-\infty}^\infty i \mathbb{P}(X=i)\mathbf{1}_{\{X\geq 0\}} = \sum_{i=1}^\infty i \mathbb{P}(X=i). $$