I'm trying to prove the following statement: $P(n) = 3^{2n-1} + 2^{n+1}$ is always a multiple of $7$ $\forall n\geq1$. I want to use induction, so the base case is $P(1) = 7$ so that's okay.
Now I need to prove that if $P(n)$ is true then $P(n+1)$ is true. So there exists a $d \in \mathbb{N}$ such that $$ 3^{2n-1} + 2^{n+1} = 7d $$ From this I need to say that there exists a $k \in \mathbb{N}$ such that: $$ 3^{2n+1} + 2^{n+2} = 7k $$ With a little algebraic manipulation, I have managed to say: $$ 2 \cdot 3^{2n+1} + 9 \cdot 2^{n+2} = 7\cdot(18d) $$ But now I am stuck. How should I keep going?