Need the use of property of addition and subtraction of $\gcd$ for my approach to prove :
$(a,b)=1\implies (ab, a+b)=1$
My approach:
$(a,b)=1\implies (ab,b^2)=b$
$(a,b)=1\implies (ab,a^2)=a$
$((ab,b^2)=b\wedge (ab,a^2)=a)\implies (2ab,a^2+b^2)=b+a\implies (2ab,a^2+b^2+2ab) = a+b \implies (2ab,(a+b)^2) = a+b$
Need help to proceed further, if correct.