Compute the limit of $\frac{a_n}{a_{n+1}}$ instead.
It is easier.
$\frac{a_n}{a_{n+1}}=\frac{(3n+3)(3n+2)(3n+1)}{(n+1)^3}\to 3^3$
Since this exists then so does the limit in your formula for the radius of convergence and to the same value.
To answer your new question. If $x_n\to 1$ then $x_n^{1/n}\to 1$. Therefore, if $\lim\frac{a_n}{b_n}=1$ then $\lim \frac{a_n^{1/n}}{b_n^{1/n}}=1$.
If you know in addition that $\lim b_n^{1/n}$ exists, then $\lim a_n^{1/n}=\lim b_n^{1/n}$.
Advice: When in doubt on how to replace a term by its asymptotic, do it step by step multiplying and dividing by the asymptotic.
$$a_n^{1/n}=\left(\frac{(n!/\text{Stirling}_n)^3\cdot\text{Stirling}_n^3}{(3n)!/\text{Stirling}_{3n}\cdot \text{Stirling}_{3n}}\right)^{1/n}=\left(\frac{(n!/\text{Stirling}_n)^3}{(3n)!/\text{Stirling}_{3n}}\right)^{1/n}\cdot\left(\frac{\text{Stirling}_n^3}{\text{Stirling}_{3n}}\right)^{1/n}$$
The first factor tends to $1$ and the second is your simplified expression to compute.