$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\ds{%
\int_{0}^{\pi/2}{\dd x \over \sin^{4}\pars{x} + \cos^{4}\pars{x}}}} =
\int_{0}^{\pi/2}{\sec^{2}\pars{x} \over \tan^{4}\pars{x} + 1}
\,\sec^{2}\pars{x}\,\dd x
\,\,\,\stackrel{\tan\pars{x}\ \mapsto\ x}{=}\,\,\, \int_{0}^{\infty}{x^{2} + 1 \over x^{4} + 1}\,\dd x
\\[5mm] & = \int_{0}^{\infty}{1 + x^{-2} \over x^{2} + x^{-2}}\,\dd x =
\int_{0}^{\infty}{1 + x^{-2} \over \pars{x - 1/x}^{2} + 2}\,\dd x
\,\,\,\stackrel{\pars{x - 1/x}\ \mapsto\ x}{=}\,\,\,
\int_{-\infty}^{\infty}{\dd x \over x^{2} + 2}
\\[5mm] & \stackrel{x/\root{2}\ \mapsto\ x}{=}\,\,\,
{1 \over \root{2}}\int_{-\infty}^{\infty}{\dd x \over x^{2} + 1} =
\bbx{{\root{2} \over 2}\,\pi} \approx 2.2214
\end{align}