4

$$\sum _{i=2}^{63}\frac{i^{2011}-i}{i^2-1}\bmod 2016$$

How could I do this problem? I know I should be looking for patterns that relate to 2016 and it's multiples, but after that I'm confused.

Parcly Taxel
  • 103,344

1 Answers1

3

Hint:

Using summation formula of Geometric Progression $$\dfrac{n^{2m+3}-n}{n^2-1}=\sum_{r=0}^mn^{2r+1}$$

$$\implies S=\sum_{n=2}^{63}\dfrac{n^{2m+3}-n}{n^2-1}=\sum_{n=2}^{63}\left(\sum_{r=0}^mn^{2r+1}\right)$$

Interchanging the order of summation,

$$S=\sum_{r=0}^m\left(\sum_{n=2}^{63}n^{2r+1}\right)$$

$$=\sum_{r=0}^m\left(\sum_{n=1}^{63}n^{2r+1}\right)-\sum_{r=0}^m1$$

Now $\displaystyle\sum_{r=1}^{63}r=\dfrac{62(63+2)}2\equiv0\pmod{2016}$

Use Show that $1^k+2^k+3^k+ \ldots +n^k$ is divisible by $ 1+2+3+ \ldots +n$

$$\implies S\equiv-\sum_{r=0}^m1\pmod{2016}\equiv2016-(m+1)$$