I tried to solve this limit with the ratio criteria: $$\lim_{n\to +\infty} \frac{a_{n+1}}{a_n},\text{ then }\lim_{n\to +\infty}\frac{(n+1)!\space2^{n+1}}{(n+1)^{n+1}}\frac{n^n}{n!\space2^n} \iff \lim_{x\to +\infty}\frac{2\space n^n}{(n+1)^n}.$$ I know that $(n+1)^n =\displaystyle \sum_{i=0}^{n}\binom{n}{i}n^{n-i}$.
So I can write this sum as $n^n(1+\binom{n}{1}\frac{1}{n}+.....)$. So I obtain $\displaystyle \lim_{n\to +\infty} \frac{2\space n^n}{n^n(1+\binom{n}{1}\frac{1}{n}+.....)} = 2$, and the limit is $+\infty$. But when I checked the result on Wolfram I realised that is wrong.
Can somebody help me?