$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sin\pars{\theta} & = 2\sin\pars{\theta \over 2}\cos\pars{\theta \over 2}
\\
\sin\pars{\theta} & = 2^{2}\sin\pars{\theta \over 4}
\cos\pars{\theta \over 4}\cos\pars{\theta \over 2}
\\
\sin\pars{\theta} & = 2^{3}\sin\pars{\theta \over 8}
\cos\pars{\theta \over 8}\cos\pars{\theta \over 4}\cos\pars{\theta \over 2}
\\
\vdots\phantom{AA} & \,\,\vdots\phantom{AAAAAAAAAAAAAA}\vdots
\\
\sin\pars{\theta} & = 2^{n}\sin\pars{\theta \over 2^{n}}
\cos\pars{\theta \over 2^{n}}
\cos\pars{\theta \over 2^{n - 1}}\cdots\cos\pars{\theta \over 2}
\\[5mm] \implies &
\bbx{\prod_{k = 0}^{n - 1}\cos\pars{\theta \over 2^{k + 1}} =
{\sin\pars{\theta} \over 2^{n}\sin\pars{\theta/2^{n}}}}
\\[5mm] \implies &
\bbx{\prod_{k = 0}^{\infty}\cos\pars{\theta \over 2^{k + 1}} = {\sin\pars{\theta} \over \theta}}
\end{align}