$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\ds{\totald{}{n}\ln\pars{n \choose k}}} =
\totald{}{n}\bracks{\ln\pars{\Gamma\pars{n + 1}} -
\ln\pars{\Gamma\pars{n - k + 1}}}\quad\pars{~\Gamma:\ Gamma Function~}
\\[5mm] = &\
\Psi\pars{n + 1} - \Psi\pars{n + 1 - k}\qquad\pars{~\Psi:\ Digamma Function~}
\\[5mm] = &\
\underbrace{\bracks{\Psi\pars{n + 1} + \gamma}}
_{\ds{H_{n}}}\ -\
\underbrace{\bracks{\Psi\pars{n - k + 1} + \gamma}}_{\ds{H_{n - k}}}
\qquad \pars{~\gamma:\ Euler\!-\!Mascheroni\ Constant~}
\\[5mm] = &\ \bbx{H_{n} - H_{n - k}}
\end{align}
FullSimplify
it, this is what you get. – a06e Mar 02 '18 at 21:11