You don't even need positive definiteness (or semi,negative etc definitiveness for that matter)
Only thing you need is that $x^*Ax \in R \; \forall x \in C$ which is ofcourse true when we compare this value with $0$ while defining such matrices.
So let $x^*A x\in R \; \forall x\in C$ (and NOT just $R$)
I will show $A$ is hermitian
$x^*Ax= \langle Ax,x\rangle=\langle x,A^*x\rangle = \overline{\langle A^*x,x\rangle} = \langle A^*x,x \rangle \rightarrow \langle (A-A^*)x,x\rangle = 0 \; \forall x\in C$
Claim: if $\langle Bx,x\rangle = 0 \; \forall x\in C \rightarrow B=0$
Proof: For arbitrary $y\in C$, $\; \langle B(x+ky), x+ky\rangle = \bar{k}\langle Bx,y \rangle + k\langle By,x \rangle$
Now set $k=1$ and $k=\iota$ to get two equations, solve them to get $\langle Bx,y\rangle =0 \; \forall y\in C \rightarrow Bx= 0 \; \forall x\in C \rightarrow B=0$