Using integration by parts, with $f = \ln(x)$ and $dg = 1/\sqrt{1 - x}\, dx$, we have:
$$\int \frac{\ln(x)}{\sqrt{1 - x}}\, dx = -2\ln(x)\sqrt{1 - x} + 2\int \frac{\sqrt{1 - x}}{x}\, dx$$
Using the substitution $x = \sin^{2}(\theta)$, where $\theta \in (0,\pi/2)$, we get:
$$\int \frac{\sqrt{1 - x}}{x}\, dx = 2 \int \frac{\cos^{2}(\theta)}{\sin(\theta)}\, d\theta = 2\int \csc(\theta) - \sin(\theta)\, d\theta = -2\ln(\csc(\theta) + \cot(\theta)) + 2\cos(\theta) + C$$
So we have:
$$\int_0^{1}\frac{\ln(x)}{\sqrt{1 - x}}\, dx = \Big[-4\ln(\sin(\theta))\cos(\theta) - 4 \ln(\csc(\theta) + \cot(\theta)) + 4 \cos(\theta)\Big]_0^{\pi/2}$$
Writing $\ln(\csc(\theta) + \cot(\theta)) = \ln(1 + \cos(\theta)) - \ln(\sin(\theta))$, we get:
$$\int_0^{1}\frac{\ln(x)}{\sqrt{1 - x}}\, dx = 4\Big[\ln(\sin(\theta))(1 - \cos(\theta))\Big]_0^{\pi/2} + 4\Big[-\ln(1 + \cos(\theta)) + \cos(\theta)\Big]_0^{\pi/2}$$
$$= 4(\ln(2) - 1) + 4\lim_{\theta \rightarrow 0^{+}}\ln(\sin(\theta))(1 - \cos(\theta))$$
You can show that this limit equals zero, for example by multiplying by $(1 + \cos(\theta))/(1 + \cos(\theta))$ and using the fact that $x\ln(x) \rightarrow 0$ as $x \rightarrow 0$.
Finally, making the substitution $x = t/u$ where $u$ is a constant:
$$\int_0^{1}\frac{\ln(x)}{\sqrt{1 - x}}\, dx = \int_0^{u}\frac{\ln(t/u)}{\sqrt{1 - t/u}}\frac{\, dt}{u} = \frac{1}{\sqrt{u}}\int_0^{u}\frac{\ln(t/u)}{\sqrt{u - t}}\, dt = \frac{1}{\sqrt{u}}f(1/u)$$.
Where $f$ is the function you've defined, i.e. $f(a) = 2\sqrt{u}(\ln(a) + C)$. Putting it all together:
$$4(\ln(2) - 1) = 2(\ln(1/u) + C) \Rightarrow C = 2\ln(2) - \ln(1/u) - 2 = \ln(4u) - 2$$
So $f(a) = 2\sqrt{u}(\ln(a) + \ln(4u) - 2) = 2\sqrt{u}(\ln(4au) - 2)$